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Synopsis 

The present paper introduces a new fundamental approach to the modeling of diffusion-con- 
trolled free-radical polymerization reactions. Our analysis follows the original work of Chiu, 
Carratt, and Soong (CCS), according to which the termination and propagation rate constants are 
expressed in terms of both a purely reaction-limited term and a diffusion-limited one. The 
contribution of the latter term to the apparent rate constants is described in terms of the polymer 
and monomer effective diffusion coefficients and an effective reaction radius. It is shown that all 
parameters appearing in the original CCS model can be calculated from first principles using 
available data on the physical and transport properties of a particular monomer-polymer binary 
system. The generalized free volume theory of Vrentas and Duda and the theory of excess chain 
end mobility are invoked for the calculation of the effective diffusion coefficients and the reaction 
radius, respectively. The approach followed in this study is general and needs only the specifica- 
tion of one unknown parameter with a clear physical meaning. All other parameters can be 
readily calculated from available data. The ability of the new model to predict molecular weight 
developments and monomer conversion in diffusion-controlled reactions is demonstrated by 
application of the propcwd model equations to the bulk polymerization of MMA. 

INTRODUCTION 

In free-radical polymerization three diffusion-controlled processes can take 
place in parallel to the ordinary chemical reactions. These are the cage effect, 
the gel effect, and the glass effect related to the initiation, termination, and 
propagation reactions, respectively. These diffusion-controlled processes 
strongly affect the rate of polymerization and can influence the molecular 
properties of a polymer. 

The cage effect is associated with the probability of a primary radical 
formed by fragmentation of initiator molecules to diffuse out of its “cage” in 
order to initiate a polymer chain. The cage effect enhances the primary radical 
recombination rate, thus reducing the initiator efficiency f .  Most investiga- 
t o r ~ ’ - ~  agree that the initiator efficiency should remain constant until very 
high conversions. This has been experimentally verified by the work of 
Brooks.‘ I t o 7 e x p r d  the initiator efficiency in terms of the rate of polymeri- 
zation, number average degree of polymerization, and initiator concentration. 
He found that f remained constant for conversions less than 80%. In a later 
publication, Ito’ presented a physical explanation of the variable initiator 
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efficiency by calculating the diffusion rate of primary radicals out of a solvent 
cage. 

The gel effect is related to the decrease of the termination rate constant 
caused by a decrease in the mobility of polymer chains due to the increase of 
the viscosity of the reaction medium. This diffusion-controlled termination 
process gives rise to autoacceleration of the rate of reaction which very often 
occurs in free-radical polymerizations. The gel effect can also affect the 
molecular weight distribution in a free-radical polymerization provided the 
molecular weight development is not controlled by transfer to monomer or 
transfer to solvent reactions. 

Since it was first reported by Trommsdorff et al.,9 the gel effect has been 
the subject of many publications. These have been reviewed by Tulig and 
Tirrell,2 O'Driscoll,'' and Hamielec." The first models developed to describe 
the dependence of the termination rate constant upon conversion were based 
on purely empirical relationships.12*13 Later a number of semiempirical models 
were developed based on free volume and entaglement concepts of macromole- 
cules.3-5, 14-18 R ecently the understanding of the dynamics of polymer chain 
entaglements has grown considerably through the introduction of the concept 
of "reptation" after deGenne~. '~-~~ A number of modeling attempts have been 
reported on the diffusion-controlled termination reaction based on the repta- 
tion 24- 27 

For polymerizations below the glass transition temperature of the polymer 
Tgp, the reaction mixture becomes a glass at  monomer conversions less than 
100%. At the glassy state, the propagation rate constant and the polymeriza- 
tion rate fall effectively to zero because of the presence of strong diffusion 
effects which hinder even the movement of individual monomer molecules. 
Marten and Hamielec3 applied the free volume theory to model the effect of 
diffusion on the propagation rate constant. Similar expressions were reported 
by other investigators4> '** 29 in an attempt to model the diffusion-controlled 
propagation reaction. 

Almost all reported models on diffusion-controlled termination and propa- 
gation reactions require the introduction of some critical break points which 
indicate the onset of the diffusional effects. These points signify the transition 
of a chemical reaction from a diffusion-free regime to a diffusion-controlled 
one. Different models are usually defined for the propagation and termination 
rate constants in each polymerization region as the reaction proceeds from low 
to intermediate conversion kinetics. Furthermore, most of the reported models 
contain a number of adjustable parameters, very often, without any real 
physical meaning. 

It is the objective of the present work to introduce a new general approach 
to the modeling of diffusion-controlled free-radical polymerization reactions. 
Our analysis follows the original work of Chiu, Carratt, and Soong' (CCS) and 
the generalized free volume theory of Vrentas and It  is our 
intention to show that one can arrive at  similar to the CCS models describing 
the gel and glass effects by following a more fundamental and physical 
approach. We shall show that all parameters appearing in the new models 
have a clear physical meaning and can be estimated in terms of available data 
on the physical and transport properties of the reacting species in a free-radi- 
cal polymerization. 
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BACKGROUND THEORY-THE CCS MODEL 
It is generally assumed that the termination step between two macroradi- 

cals involves a three-stage process. Initially the two macroradicals diffuse 
toward one another by translation of the center of the macroradicals so that 
certain segments of the chains are in contact. This process is known as 
translational diffusion. This is followed by segmental diffusion and rearrange- 
ment of radical chain ends so that collision of radical ends is possible. Only 
after the proper orientation of chain ends, termination reaction can take 
place. 

The development of most gel effect models is based on the above qualitative 
description of termination reaction as a three-stage process. At  low conver- 
sion, segmental diffusion is the rate-controlling step in the termination reac- 
tion, while, at high conversions, translational diffusion dominates the rate of 
termination. As pointed out by Chiu et al.,l conventional modeling of gel 
effect suffers from u ~ e c e ~ s a r y  model segmentation and introduction of criti- 
cal break points that mark the transition of polymerization from the segmen- 
tal diffusion-controlled regime to the translational one. Chiu et al.' in their 
original work adopted a new approach to model free-radical polymerization 
reactions exhibiting strong diffusion limitations. In the CCS model, diffusion 
effects are viewed as an integral part of the chain termination and propa- 
gation reactions from the beginning of polymerization. Thus, the effect of 
diffusion on the termination rate constant gradually increases with conversion 
and becomes dominant around a certain conversion level, which is associated 
with the onset of the gel effect. This eliminates the need for the use of critical 
break points, the sudden introduction of diffusional effects, and the associated 
model segmentation. According to the CCS model, the region around a 
macroradical is divided into three zones (Fig. 1). r, denotes the minimum 
separation distance for an effective biradical collision, and C,,, is a hypotheti- 
cal radical concentration in the region defined by r,. rb defines the radius at  

'b ,I 

Fig. 1. Schematic representation of the minimum separation distance rm for an effective 
biradical collision and the radius rb at which the concentration of radicak is set equal to Cb. 
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which the radical concentration is that of the bulk phase, cb. Following the 
mathematical analysis of Chiu et al.,’ the apparent termination rate constant 
k ,  can be expressed as 

An analogous expression for the propagation rate constant, k,, can be derived 
to account for the glass effect: 

k,, and k,, are the true values of the intrinsic termination and propagation 
rate constants, respectively. Deff and D& are the corresponding effective 
diffusion coefficients for polymer macroradicals and monomer molecules. ho is 
the zero-moment of the “live” polymer distribution, and it is equal to the 
total concentration of macroradicals. The term C in eqs. (1) and (2) accounts 
for the concentration dependence of Deff and D&. Chiu et al.’ invoked the 
Fujita-Doolittle free volume theory3, to express C as follows: 

c = “XP{(Pm/[A(T) + W)%I} (3) 

where A ( T )  and B ( T )  are treated as adjustable parameters of temperature. 
For the free-radical polymerization of methyl methacrylate (MMA), Chiu 
et al.’ found that the parameters A(T) and B ( T )  can be expressed as 

(4) 
2 

A(T) =.C, + C2(T-  TgP) , B ( T )  = const 

The parameters 0, and 0, have dimensions of time and can be viewed as 
the characteristic diffusion time for macroradicals and monomer, respectively. 
In the original work of Chiu et al.,’ the following expressions are reported for 
the parameters 0, and 0, in relation to the batch polymerization of MMA: 

0, = C31,*exp( E / R T ) ,  0, = C4exp( E ’ / R T )  (5) 

Substituting the expressions for C, 0,, and 0, into eqs. (1) and (2), we obtain 
the following results: 

k,’ = k,’ + h o I ~ 3 e x ~ ( E / R T ) / e x ~ ( ~ , J [ C ,  + G(T- Tgp)2+ BTJm]) (6) 

k;’ = k i t  + A,C4exp( E’/RT)/exp(v,J[ C ,  + C2( - Tgp)2 + B T J ~ ] )  (7) 

We note that eqs. (6) and (7) describing the diffusion effects on the termina- 
tion and propagation rate constants contain eight adjustable parameters, 
namely, C,, C,, C,, C.,, a, B, E, and E’ that must be estimated from 
experimental measurements on conversion and molecular weight averages of 
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the polymerization system under study. Furthermore, the physical meaning of 
all model parameters is not obvious, and their application to other polymeri- 
zation systems and reactor operating conditions may not be possible. For 
example, if we assume that initiator is continuously added to a batch reactor, 
then the functional dependence of 8, [eq. (5)] upon the initial initiator 
concentration I, may not hold true. 

As stated in the introduction, it is our objective to show that we can 
estimate the numerical values of all parameters appearing in eqs. (1) and (2) 
using available data on the physical and transport properties of the reacting 
monomer, solvent, and polymer species. The approach followed in this work is 
general and needs only the specification of one unknown parameter, which has 
a clear physical meaning. We believe that the present study offers a new 
fundamental approach to the modeling of diffusion-controlled free-radical 
polymerization reactions. 

THE NEW MODEL 

In the CCS model described in the previous section, the rate constants k ,  
and k,  are expressed in terms of both a purely reaction-limited term and a 
diffusion-limited one [eqs. (1) and (2)]. The terms k,, and kS, represent the 
true kinetic rate constants for chain termination and cham propagation, 
respectively, and exhibit the usual Arrhenius temperature dependence. The 
contribution of mass diffusion processes to the overall rate constants k ,  and 
k,  is described in terms of the effective diffusion coefficients Deff and D&, 
respectively, and the reaction radii r, and r;. In what follows we show that 
the diffusion coefficients and the reaction radii can be estimated from first 
principles using available data on the physical and transport properties of a 
particular monomer-polymer system. The approach adopted for the calcula- 
tion of Deff and D& utilizes the generalized free volume theory of Vrentas and 

For the calculation of rm the theory of excess chain end mobility is 
invoked.17 

In the early stages of polymerization the termination rate constant is 
primarily governed by the intrinsic term k,,. As the polymerization proceeds, 
a transition from the reaction-limited (or segmental-limited) regime to the 
translational diffusion-controlled regime takes place. This causes a decrease in 
the termination rate constant k,.  Several investigators have modeled the 
observed decrease in k ,  by considering a dependence of k ,  upon the self-diffu- 
sion coefficient of polymer. This means that the effective diffusion coefficient 
Deff in eq. (1) will represent the self-diffusion coefficient of polymer macro- 
molecules. By analogy, D& in eq. (2) will represent the self-diffusion coeffi- 
cient of monomer molecules. 

Over the past 20 years, the free volume theory originally developed by 
Cohen and Turnbul134*35 and later modified by F ~ j i t a ~ ~ ? ~  has been extensively 
used in the analysis of diffusional behavior of concentrated polymer solutions. 
Recently, a more general version of the free volume theory was presented by 
Vrentas and Dudamr31 and equations for the determination of the self-diffu- 
sion coefficients of the polymer and the solvent were developed. According to 
the Vrentas-Duda's generalized free volume theory, the self-diffusion coeffi- 
cients of polymer and monomer in a polymer-monomer binary system can be 
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calculated by the following equations: 

Deff = N*Dpoexp( -Ep/RT)exp[ -Y( wmv$ + w,QS) / (V;S) ]  

D& = Dmoexp( -EJRT)exp[ - y (  wmp$ + w p 9 t ) / V ; ]  

where the specific free volume V; of the solution is given by 

V; = w m [ ~ 1 1 ( ~ 2 1 +  T -  ~ g m ) ]  + w p [ ~ 1 2 ( ~ 2 2  + T -  

All symbols are defined in the nomenclature. 

Calculation of DeH and D& 

For a reacting system the Detr and D& coefficients need to be calculated 
continuously as the polymerization proceeds. The instantaneous values of 
self-diffusion coefficients for polymer macroradicals and monomer will be 
given by eqs. (8) and (9), respectively. We note that the expressions coFtain a 
number of nonadjustable physical parameters, namely, V:, pi, 
of these parameters can be calculated from available data on the physical and 
transport properties of the reaction species. The physical meaning and the 
estimation of the above parameters are discussed next. 

v:, Q, Tgm, T g p ,  ~ 1 1 ,  ~ 1 2 ,  ~ 2 1 ,  ~ 2 2 ,  Y, (7 N*, ~ p o ,  ~ p ,  ~ m o ,  E m *   he values 

Specifi Volume to 
The specific volumes p: and q of the pure monomer and polymer can be 

calculated as a function of temperature using available density data (d i ) :  

Soh and Sundberg18 have tabulated such values for Go for most mono- 
mer-polymer systems of interest. 

Specifi Critical Hole Free Volume R? 
c* represents the minimum or critical local hole free-volume required for 

displacement of a polymer segment. Vrentas and D ~ d a ~ ~ - ~ ~  have estimated 
the value of q* from the corresponding specific volume of the pure compo- 
nent a t  0 K: 

Howard3' discusses several methods for calculating the yalues of qo(0)  for 
both polymers and simple liquids. Numerical values of V,* parameter have 
been reported by Liu et al.36 for a number of polymerization systems. 
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Glass Transition Temperature Tgi 

Numerical values for the glass transition temperature of monomer, polymer, 
and solvent have been tabulated by several investigators for a number of 
free-radical polymerization systems. These values can be found in Refs. 3, 4, 
38, and 39. 

Free-Volume Parameters ( K , , ,  K,,,  K,,,  K,,) 

Based on the free volume theory, the free volume of the reacting system can 
be expressed as 

V, = TmV,m + ~ p V , p  (14) 

where 

Numerical values of the parameters Vmg, a,, T,,, Vpg, a,, Tgp, X for various 
polymerization systems have been reported by Soh and S~ndberg .~  A is a 
constant parameter related to the ratio of thermal expansion coefficients of 
polymer below and above Tgp.4 

Alternatively, the free volume V,i of the i component can be expressed as 
the ratio of the specific free volume qi to the critical specific free volume q*: 

= qJq* (17) 

From eqs. (10) and (14)-(17) we obtain the following expressions for the free 
volume parameters: 

K ,, = Xa,?, K,, = V,,/XaP (19) 

Overlap Factor y 

The overlap factor y is introduced because the same free volume is available 
to more than one molecule. Vrentas and Duda31v4' have calculated the 
numerical value of y for various polymer-solvent systems based on the 
Williams, Landell, and Ferry equation.41 The overlap factor y can be calcu- 
lated from the first WLF constant (C,), and the free volume of the polymer at 
the glass transition temperature: 

y = 2.303V,,( C, ) ,  (20) 

Values of (C,), parameter have been experimentally measured by several 
investigators and tabulated by Liu et al.= 
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Factor .$ 

The factor .$ is defined as the ratio of the critical molar volume of the 
monomer jumping unit to the critical molar volume of the polymer and is 
given by 

where M, and Mi* denote the molecular weight of monomer and polymer 
jumping unit, respectively. Vrentas and D ~ d a ~ . ~ ~  have pointed out that the 
parameter (yQS/K12) can be approximated by a linear function of the molar 
volume of the monomer jumping unit at  0 K: 

where /3 is a constant which can be determined experimentally. Numerical 
values of p for various polymer-monomer binary systems have been reported 
by Ju et a1.42143 

Dependence of Dell on Molecular Weight N * 
In general the parameter N* expresses the dependence of the self-diffusion 

coefficient upon the molecular weight of polymer. In the literature, various 
expressions describing the molecular weight dependence of self-diffusion coeffi- 
cient have been reported. These expressions obey the following general law: 

Bueche4 proposed a value for n = 3.5 for the case of large entagled diffusion 
macromolecules. Marten and Hamielec3,& have used a value of n = 1.75 when 
modeling diffusion-controlled reactions in MMA and St polymerizations. The 
same investigators have assumed that M represents the cumulative weight- 
average molecular weight. Soh and Sundberg16~" used an exponent n = 3.4 
and for M the instantaneous chain length of the growing polymer macroradi- 
cals. In the context of the reptation theory, various  investigator^'^,^^-^ have 
proposed a value for n = 2. In the present work, the variable n is set equal to 
2 and M is taken to be equal to the cumulative number-average chain length. 

Preexponentiul Factors Dpo and D,, and Activation Energies 
Ep and Em 

The preexponential terms Dpo and D,, and the activation energies Ep and 
E, for polymer and monomer, respectively, can be calculated from a limited 
amount of d ih iv i ty  data obtained for a particular system. Duda et a1.40 
estimated the numerical values of D,, and E,  for a number of poly- 
mer-solvent systems from a limited amount of difksivity measurements. 
They have found that the value of Em lies in the range of 3-25 kcal/g mol. 

For the calculation of Ep, eq. (8) is written as follows: 
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where 

The apparent activation energy E,, and the preexponential term DL0 can be 
estimated from experimental measurements of polymer self-diffusion coeffi- 
cient at different temperatures. The activation energy term E, can be subse- 
quently estimated from the known values of Eap and Ed. 

As an example, the numerical value of Ep for the PMMA-MMA system 
was calculated using the experimental measurements on the polymer self- 
diffusion coefficient reported by B a l l ~ g e . ~ ~  For a polymer volume fraction of 
0.192, Balloge* estimated from dynamic light scattering measurements a 
numerical value for the apparent activation energy, E,, = 5.515 kcal/g mol. 
From eq. (25), a value of 5.275 kcal/g mol is obtained for the activation term 
EL. Therefore, the numerical value of E, for the PMMA-MMA binary system 
will be equal to 0.24 kcal/g mol. This implies that the effect of the exponential 
term exp( - E J R T )  on DeE will be neglibile, which is in full agreement with 
the recommendation of Vrentas and for E, = 0. 

Calculation of Reaction Radius 

For the calculation of the effective reaction radius rm the theory of excess 
chain end mobility is in~0ked.l~ Soh and Sundberg have derived an expression 
for the termination rate constant by assuming that the chain end of a live 
macroradical is free to move in a relatively limited spherical region of radius 
rm with the node of a chain entanglement at the center. For the calculation of 
rm they developed the following equation: 

r, = {In [ l O o o ~ ~ / (  NA [ R '1 Q 3/2)] } ' / ' / T  (26) 

where 

7 = (3/2 j&32)1'2 (27) 

6 is the average root-mean-square end-to-end distance per square root of the 
number of monomer units in a chain and can be measured experimentally. 
Numerical values for 6 have been tabulated by Ferry41 for various polymers. 
j, is the entaglement spacing and is equal to the average number of monomer 
units in a dangling chain. j, can be expressed in terms of the critical degree of 
polymerization for entanglement of pure polymer, x,,,, and the volume frac- 
tion of polymer, q 1 7 :  

j, = x,/(~cP,) (28) 
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TABLE I 
Kinetic Rate Constants for the MMA Polymerization 

f = 0.58 for AIBN 

k, = 6.32 X 10l6exp( -30.66/RT) (min-') AIBN (Tobolsky and Baysal#) 

k,, = 2.95 X 107exp( - 4.35/RT) (L/mol min) 

k,, = 5.88 x 1ogexp( - o . ~ o ~ / R T )  (L/mol min) 

(Mahabadi and O ' D r i s C ~ l l ~ ~ )  

(Mahabadi and O 'Dr i~co l l~~)  

(Stickler and Meyerhoffm) 

(Bevington et al?l) 

k,,/~, = 9.48 x 1oaexpl- I~.M/RT) 

k,Jk,,  = 3.956 X 10W4exp(4.09/RT) 

TABLE I1 
Physical and Transport Properties for the MMA-PMMA System 

d, = 0.968 - 1.225 X 10-3T ("C) (g/cm3) 

dp = d,(l + c); 

(Tulig and %ell2) 

(Soh and Sundberg") 

(Soh and Sundberg") 

c = 0.183 + 9.0 X 10-4T ("C) (g/cm3), 

V/, = 0.149 + 2.9 X 10-4T ("C) 

V/, = 0.0194 + 3.0 X (2' - 105), T 2 105°C (Soh and Sundberg") 

= 0.0194 + 1.3 X (T - 105), T < 105°C (Soh and Sundberg") 

Vi(0 K) = 0.822 (cm3/g) 

(0 K) = 0.77 (cm3/g) 

(Haward=) 

(Liu et  al.=) 

T', = 115'C; Tgm = -126°C (Soh and Sundberg17) 

a, = 2.9 X 10-40C-' (Soh and Sundberg17) 

h = 0.428; Vpg = 0.0224 (cm3/cm3) (Soh and SundbergL7) 

a, = 3 X 10-40C-'; 

(C,), = 14.8 (Liu et  al.=) 

/3 = 12 (K g mol/cm3) 

y = 0.763 [from eq. (21)]; 

(Ju et al.42,43) 

.$ = 0.362 [from eq. (22)] 

NA = 6.023 X n = 3.1459 

S = 6.9 (A) (Ferry41) 

x,  = 100 

E, = 0.24 (kcal/g mol); 

Em = 20.844 (kcal/g mol); 

J,  = 107.ffi/zk: (this study) 

(Soh and Sundberg") 

D,, = 10 (cm2/s) 

D,, = 223.4 (cm2/s) 

[eqs. (24)-(25)] 

(Ju et al.43) 

Numerical values for xc0 have been reported by Ferry41 for a number of 
polymers. It should be noted that application of eq. (28) to very low conver- 
sions (vp --* 0.0) will yield unreasonably high values for j ,  ( j ,  + 00). As a 
result, eq. (28) has to be properly modified in order to limit the variability of 
j c  within acceptable limits. A solution to this problem can be obtained by 
defining an apparent entaglement spacing parameter, 
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where j,, is the critical value of j ,  corresponding to zero conversion. Equation 
(29) can be interpreted as the net result of both a diffusion-free term and a 
diffusion-limited one. The presence of the second term in eq. (29) will eventu- 
ally cause a decrease in the effective reaction radius as a result of the 
restricted chain mobility at  high conversions. By analogy to eq. (26), an 
expression for the effective reaction radius r; for propagation can be defined. 

Derivation of the Final Model Equations 

Based on the theoretical developments discussed in the previous sections, 
one can obtain the following final expressions for the apparent rate constants 
k, and k,: 
k;' = k;' + ( r~3)h0x~D,-dexp(  E p / R T )  

xexP{y(qmV:dm + qpQdpt)/[t(qmQ:Vfmdm + c ~ , Q ~ f p d p ) ] )  (30) 

kpl = kp; + ( r&2/3)XoD;okxp( E J R T )  

xexp{ V (  qmV:dm + q p Q d p t ) / [  qmV:Vfmdm + q p Q ~ f p d p ) ] )  (31) 

-8 

-10 

-12 

n 
8. 
8. 

Y 
0 

-14 

r 

-16 

-18 

-20 

1 

- 
PMMA 

I 1 

0.2 0.4 0.6 0.8 1 .o 

Comersim 

Fig. 2. Change in the polymer, D,, [(l) T = Nod; (2) T = 70°C], and monomer, D& [(3) 
T = NOC; (4) T = 70°C], effective diffusion coefficients with conversion for two different temper- 
atures (Z,, = 0.0258 g mol/L). 
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It is instructive to point out that the CCS final expressions for k ,  and I z ,  
[eqs. (6) and (7)] are similar to eqs. (30) and (31). However, all parameters 
appearing in the derived equations have a clear physical meaning, and their 
numerical values can be obtained from reported data on the physical and 
transport properties of the reacting species. In addition, the functional depen- 
dence of I z ,  and 12, upon polymerization temperature, monomer, and polymer 
concentration is naturally introduced through the application of the gener- 
alized free volume theory and the concept of excess chain end mobility. By a 
direct comparison of eqs. (6) and (7) with eqs. (30) and (31), we obtain the 
following relationships: 

2 I," - x, 

E - E ,  and E ' - E ,  

400 

300 

n 
5 m  e 

100 

0 
0.0 0.2 0.4 0.6 0.8 1 .o 

cmversion 
Fig. 3. Change in the effective reaction radius rm for two different temperatures T ("C) 

( I ,  = 0.0258 g mol/L): (1) 90; (2) 70. 
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0 -  

A ' 6 -  f 
f c 
t: 
-b 
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A 4 -  
a Y 
0 
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2 -  

0 1  

where 

log(kt) 

log(kP) 

PMMA 

2 

I I 

In the CCS model, a, E ,  E',  A(T) ,  and B ( T )  are treated as adjustable 
parameters determined by fitting the model's predictions to experimental 
measurements on conversion and molecular weights. It is interesting to note 
that, at low conversions, the identified by Chiu et al.' dependence of k ,  upon 
the initial initiator concentration is in agreement with the proposed depen- 
dence of DeR upon the number-average chain length in the context of the 
reptation theory. This can be shown by noticing that the instantaneous 
number-average chain length X, is proportional to the reciprocal of the square 
root of the initiator concentration: 

Xn = k,M/(2fkdk,1' /2)  - 1-ll2 

10 , 

0 .o 0 2 0.4 0.6 0 8  1 .o 

(37) 

Conversion 

Fig. 4. Dependence of the termination and propagation rate constants upon monomer conver- 
sion (2' = 7OoC, I ,  = 0.0258 g mol/L): (1) present model; (2) CCS model. 
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1 0  

0.6 0.8 - - 

0 4  - 

At low conversions, 5, and I will be approximately equal to x, and I,. As a 
result, the relationship 32 will hold true for (Y = -1, which is actually the 
estimated value of the parameter for the bulk polymerization of MMA.l 

In order to show that the relationship (34) is valid, we calculate the ratio of 
polymer diffusion coefficient DeR to the polymer diffusion coefficient at  100% 
conversion, DeE, ,: 

PMMA 

1/77 
// / /’’ 

,</.I 

A’,*/ 

The last result shows that the concentration dependence of DeR will be 
described by an expression similar to eq. (3). Note that the parameter A ( T )  in 
eq. (4) depends on the square of the temperature difference (T - TgP).’ In a 
similar way, the parameter A ( T )  in eq. (35) will depend on the square of qP, 
which is proportional to the temperature difference (T - TgP) as shown by eq. 
(16)- 

The ability of the new model to predict molecular weight developments and 
monomer conversion in diffusion-controlled free-radical polymerizations is 
subsequently demonstrated by application of the new model equations to the 
bulk polymerization of MMA. 

d 

! 
Y 
L 

0 

0 20 40 60 80 100 

t (min) 

Fig. 5. Effect of the initial initiator concentration on the conversion-time histories in the bulk 
free-radical polymerization of MMA at T = 70°C. Discrete points represent experimental data,47 
and the solid lines denote the calculated results. I,, (g mol/L): (1) 0.0258; (2) 0.0155. 
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APPLICATION TO MMA POLYMERIZATION 

The free-radical bulk polymerization of MMA in a batch reactor can be 
modeled in terms of a set of nonlinear differential equations of the following 
form: 

dx 
- = ( k ,  + k f , ) ( l  - X)A, 
dt 

dV dx 
dt dt 

I dV dI 
dt V dt 

- -  - - Vo€- 

- - k d I  - -- - -  

A, dV 
dt V dt 
-- - 2 fkdI - ktA: - - - dA0 

A, dV 
V dt 

-k,A,A, - - - 

-- 2 - 2 fkdI 4- k,M(2A, + A,) 
dt 

A, dV 
V dt 

+ kf,M( A, - A,) - ktA0A2 - - - 

dP0 P o  dV 
- = ( k t d  + ikt,)A: + kf,MAo - -- 
dt V dt 

P1 dV - ktAoAl + kf,MA, - -- dPl 

dP 2 

- -  
dt V dt 

P 2  dV - k,AoA2 + ktJ? + kf ,MA, - -- 
dt V dt 
- -  

with 

M = Mo(l - X)/(1 + c X )  

(39) 

(43) 

(44) 

(45) 

(47) 

M denotes the monomer concentration and I is the initiator concentration. 
A,, A,, A, and p,, p,, p2 are the zeroth, first, and second moment of the “live” 
and “dead” polymer molecular weight distributions, respectively. c is the 
fractional volume change at  100% conversion. All other symbols are defined in 
the nomenclature. Derivation of the above equations can be found in the 
literature.’? 2*39 If we assume that the quasi-steady-state approximation (QSSA) 
for live radicals is valid, then we can replace the left-hand side derivatives in 
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eqs. (42)-(44) with zero. The number-average M, and weight-average M ,  
molecular weights can be calculated in terms of the leading moments of the 
polymer MWD: 

M, = ( M r n ) p J p O ;  Mu = ( M r n ) p d p 1  (49) 

Tables I and I1 summarize the numerical values of the kinetic and physical 
parameters appearing i-n the new model in relation to the free-radical poly- 
merization of MMA. It  should be pointed out that the numerical values of all 
parameters appearing in eqs. (30) and (31) have been obtained or/and calcu- 
lated in terms of reported data on the physical and transport properties of 
MMA-PMMA binary system. The only unknown parameter in the model is 
the critical value of the entaglement spacing, jco. It was found that jco 
followed a similar to eq. (23) scaling law with respect to the initial value of the 
number-average chain length, xn0 

jco - x!$, 500 I xn0 I 2200 (50) 

The last result shows that the initial effective reaction radius rmo will vary 
with temperature and initial initiator concentration since xn0 is a function of 
these variables. 

1 0  

0.8 - 

1 o.6j c 
0 
II 
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c 

t 
u 0.4 

0.2 - 

0 M 40 60 80 im 

t Onin) 
Fig. 6. Effect of the polymerization temperature on the conversion-time histories in the bulk 

free-radical polymerization of MMA with I,  = 0.0258 g mol/L. Discrete points represent experi- 
mental data,47 and the solid lines denote the calculated results. T ("C): (1) 90; (2) 70. 
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1pr 

In Figure 2, the variation of the polymer and monomer effective diffusion 
coefficients with respect to monomer conversion is plotted. It can be seen that 
Deff shows a sharp decrease at  a conversion point in the range of 0.5-0.6. On 
the other hand, D& presents a noticeable change only at very high conver- 
sions. The variation of the effective reaction radius with conversion is plotted 
in Figure 3 for two different temperatures. Note that r,,, varies continuously 
with conversion and only at  conversions very close to the glass point shows a 
steep decrease. It is apparent that the effective reaction radius decreases with 
temperature as a result of the restricted mobility of macromolecules. I t  should 
be pointed out that in the numerical calculations, the effective reaction radius 
r; for propagation was approximated by the effective reaction radius r,,, for 
termination. 

In Figure 4, the apparent values of k ,  and k ,  are plotted against the 
monomer conversion. The solid lines represent the predictions of the present 
model [eqs. (30) and (31)] while the broken lines are referred to the CCS 
results [eqs. (6) and (7)]. It is obvious that both models predict similar 
behaviors for k, and k ,  with respect to conversion. 
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Fig. 7. Comparison of calculated and e~perimental~~ average molecular weights (2' = 7OoC, 

I ,  = 0.0258 g mol/L). 



1320 ACHILIAS AND KIPARISSIDES 
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Fig. 8. Comparison of calculated and e~per imenta l~~ average molecular weights (2' = W'C, 
I, = 0.01548 g mol/L). 

Finally, in Figures 6-8, predicted model results on conversion, M,, and M,, 
are compared to corresponding experimental values reported by Balke and 
Hamiele~.~' In general, there is an excellent agreement between predicted and 
experimental conversion values at  different polymerization conditions (Figs. 5 
and 6). 

Similarly, there is a good agreement between experimental and predicted 
values of M, and M, (Figs. 7 and 8). The observed difference between 
predicted and experimental values of M ,  may be due to errors in experimen- 
tal measurements or/and to a varying initiator efficiency. Actually, the latter 
is the subject of our present research efforts. 

CONCLUSIONS 

A new fundamental approach is developed to describe diffusion phenomena 
in free-radical reactions. It is demonstrated that all parameters appearing in 
the original model of Chiu, Carratt, and Soong can be readily calculated by 
using the generalized free volume theory and the theory of excess chain end 
mobility together with available data on the physical and transport properties 
of a monomer-polymer binary system. 
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Simulation results show that the new model equations can satisfactorily 
predict molecular weight developments and monomer conversion in the free- 
radical bulk polymerization of MMA. The model introduces actually one 
adjustable parameter related to the initial effective reaction radius at  zero 
conversion. All parameters appearing in the new model equations have a clear 
physical meaning, which indicates that the proposed modeling approach will 
be applicable to other reactive systems. This is substantiated by the successful 
application of the new model equations to the solution polymerization of 
MMA. Current research efforts are focused on the extension of the proposed 
analysis to other diffusion-controlled homo- and copolymerization systems. 

APPENDIX: NOMENCLATURE 

first WLF constant of the polymer at the glass transition point 
effective radical concentration in the region defined by rm 
radical concentration in the bulk phase 
effective diffision coefficients 
preexponential factors 
activation energies in the CCS model 
activation energies 
efficiency of the initiator 
concentration of the initiator 
entaglement spacing 
initiator decomposition rate constant 
chain transfer to monomer rate constant 
rate constant for the propagation reaction 
total rate constant for the termination reaction ( k t c  + k t d )  
rate constant for termination by combination 
rate constant for termination by disproportionation 
monomer concentration 
molecular weight of the polymer jumping unit 
molecular weight of the monomer 
number and weight average molecular weights 
Avogardro's number 
universal gas constant 
minimum separation distance for an effective biradical collision 
defines the region in which the radical concentration is that of the bulk phase 
temperature 
glass transition temperature for the monomer and polymer, respectively 
time 
volume 
average free volume of the solution 
free volumes of the monomer and polymer 
free volumes of the monomer and polymer at the glass transition temperature 
specific volumes of the monomer and polymer 
specific critical hole free volumes of the monomer and polymer 
monomer and polymer weight fractions 
conversion 
critical degree of polymerization for entaglements of the pure polymer 
cumulative number average chain length 
instantaneous number average chain length 

Greek Letters 

a,, up difference in thermal expansion coefficients between the liquid and the glassy state for 
monomer and polymer, respectively 

Y overlap factor 
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average root-mean-square end-to-end distance per square root of the number of monomer 
units in a chain 
contraction factor at  100% conversion 
adjustable parameters in the CCS model 
parameter related to the ratio of the thermal expansion coefficients of polymer below and 
above TBp 
moments of the growing radical distribution ( i  = 0, 1,2) 
moments of the dead polymer distribution 
ratio of the critical molar volume of the monomer jumping unit to the critical molar 
volume of the polymer 
volume fractions of the monomer and polymer 
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